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Abstract—A semi-analytical finite element scheme for the analysis of diffusion process in linear elastic
porous media is presented. Variational principle based on Biot's Theory serves to establish discretized
equilibrium and flow equations in terms of nodal displacements and fluid pore pressures. Time dependency
of the system is removed by the Lapiace transformation.

The Laplace transforms of nodal pore pressures can be obtained by solving a standard cigenvalue
system after releasing all nodal displacements through condensation. In the case of step loads commonly
found in consolidation problems, the Laplace transforms can be inverted analytically. For general loading
however, a serics of step loads is introduced as its approximation, and the final solution is obtained by

superposiiton.

Three types of quadrilateral plane-strain finite elements are tested for their performance in solving 2-D
consolidation problems by the present scheme. The quadrilateral element with eight displacement and four
pore pressure nodes shows the best overall performance. Results from numerical examples indicate that the
present scheme is extremely efficient. Solution of both the pore pressure and the displacement fields at any
specified time can be determined explicitly without intermediate solutions.

INTRODUCTION

A broad class of physical phenomena can be described by the diffusion process in linear elastic
porous media. Obvious examples are problems of consolidation and seepage. Interest in the
behaviour of porous media can be traced back to the work of Terzaghi[1] in which a theory of
one dimensional consolidation was presented. Many contributions have since been made for
various improvements[2]. A theory of three dimensional consolidation was presented by
Biot[3]. Biot's equations are complicated by the coupling between the elasticity problem and
the diffusion process; consequently, closed form solutions are available only to simple prob-
lems with regard to geometry, loading and boundary conditions[4]. Because of this shortcom-
ing, attempts have been made to apply numerical techniques to this class of problems.

A finite element scheme was first proposed by Sandhu[5] for the analysis of seepage in
elastic media. This finite element solution was based on a variational principle in which
displacement and fluid pore pressure are primary field variables. Subsequent researchers{6-8]
attempted to improve the solution in many aspects. Yokoo et al.[9] presented a more general
variational principle which admits interelement discontinuities of the field variables. Recently,
Krauss[10] proposed a finite element scheme based on the virtual work principle. The principle
of virtual displacement is used to establish a set of generalized equilibrium equations for the
medium, while the Lagrange multiplier technique enforces the interelement continuity con-
ditions.

For spatial discritization, many researchers|[S, 6, 8] employed triangular elements. Valliap-
pan et al.[7] used an eight-node isoparametric quadrilateral element. Recently Sandhu et al.[11]
compared the performances of several finite elements: defficiencies were reported in the
elements using the same set of interpolation functions for both the pore pressure and
displacement fields. _

In conjunction with the spatial discretization, time integration methods are often used for
temporal discretization. In general, time integration technique entails very small time step for
solutions at the earlier stage of the diffusion process. If solutions are required after a long
duration the size of time step may be increased several times for economic reason. Each time
step change however requires a new matrix factorization, and thus increases the computational
cost.
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In this study, a semi-analytical finite element scheme is proposed. Based on Biot’s theory,
spatial discretization of linear elastic porous media is conducted through a finite element
idealization. The Laplace transformation serves to remove its time dependency.

Three quadrilateral plane-strain elements with varying interpolation orders of displacement
and the pore pressure fields are tested, in the attempt to determine the best performing element
under the present scheme.

FORMULATION

Analysis of the Newtonian fluid diffusion process in a saturated, linear elastic porous
medium by Biot’s theory[3] employs the following assumptions.

(1) The elastic medium is isotropic and saturated with incompressible fluid.

(2) Deformation of the elastic medium depends on the effective stresses.

(3) Fluid flow through the elastic medium is governed by Darcy’s law.

(4) Deformations and velocities are small.

Field equations

Figure 1 shows a region R occupied by the elastic medium of which the volume is denoted
by V and the boundary surface by S. Boundary conditions associated with the elastic
deformation consist of a prescribed surface traction T on Sy and a prescribed displacement U
on Sy, where St + Sy = S. On the same surface, boundary conditions associated with the fluid
diffusion process are the prescribed pore pressure P on Sp and the prescribed normal outflow
of fluid, Q, across S, where Sp + So = S.

The governing equations for the combined elasticity problem and diffusion process are given
as’follows[3].

(a) Equilibrium equations:

0',~,-_,»+6.~,-p,,-+pF} =0 (1)

where @, p, p, F are, respectively, the effective stress tensor, the excess pore pressure of fluid,
the mass density of the medium and the body force vector. The symbol §; denotes the
Kronecker delta. Subscripts after a comma denote spatial differentiation in the standard indicial
notation and repeated indices imply summation.

(b) Stress—strain relationship:

gij = Eijklfu (2

where E denotes the fourth-order elasticity tensor of the medium and € is the infinitesimal

Fig. 1. Finite element idealization of a 2-D porous medium.
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strain tensor given by,
€ = %(ui.i +u;:) (3)
in which u is the displacement vector.

{c) Equations of continuity:
The condition of saturation implies that

é,'.' =i (4)

where v is the fluid velocity vector relative to the medium and (-) = d(-)/dt. The fluid velocity is
governed by the generalized Darcy’s law such that

v =—Hy(p,; + pF) )

where H is the permeability tensor and p; the mass density of the pore fluid.

Assuming no instantaneous volume change at the initial state (t =0) when the load is
applied, the convolution product associated with eqn (4) at any time ¢, in view of eqns (3) and
(5), can be written as,

g *{Hy(p,; +pF)lu+u,: =0 (6)
where g = 1. The convolution product is defined as

Alx, t)* B(x,t)= J: Alx,t - 7)B(x, 1) dr. )]

(d) Boundary conditions:
Traction and displacement boundary conditions associated with a deformation of elastic
medium are

n,»(a;,- + Sg;P ) = T, on S'r (8)
i = U,' on Su- (9)

For diffusion process, boundary conditions associated with the flow of pore fluid are the
prescribed pore pressure,

p=P onS, (10)
and the prescribed outflow of the pore fluid

nvi=Q onS, (11

where n; is the outward unit normal vector to the boundary surfaée of R.

Variational principle

A functional #(u, p) can be constructed in terms of u and p which are taken as primary field
variables subject to eqns (2), (3), (9) and (10). The trial functions of u and p that produce
stationary value of # will automatically satisfy the field equations, eqns (1) and (6), and the
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natural boundary conditions, eqns (8) and (11), at any time ¢t € [0, ). An expression of 7 can be
written as{5].

ﬂ(U’P)=fR [%a;,*u(;_;>-pﬁ*ui+p *ui.i_%g*vi*(p’i+pfﬁ)]dv
- [ thivurds+ [ g Qrpras (12)
St So

in which u;; = %(“u +u;,).

Finite element discretization

The region R is discretized into an assemblage of quadrilateral finite elements as shown in
Fig. 1. In view of eqn (12), only the displacement and the pressure fields are required to be
continuous over the domain. As a result, eqn (12) can be written as the accumulation of
individual element contributions, i.e.

w(u,p) =D, °(u,p) (13)

€

in which
. i i
7y, p)= 70 ¥ Ui jp~pF*ui+p*u,; T38%; *(p,i + pFi) | dv
Rf

- [ Firwias+ [ tg+ Qe prds (14)
S¢ Sof

where R* denotes the element domain and S% and S§ are respectively parts of Sy and S that
are associated with the element.

The displacement field u and the fluid pore pressure field p within each element can be
expressed in terms of their nodal values by using the shape functions N, and N, respectively,
i.e.

ulx, 1) = ; N U (1) (15)
p(x, 1) = ;I N,'(0p" (1) (16)

where U'(¢) and P'(t) are, respectively, the displacement vector and the pore pressure at node
I and n,, n, are numbers of element nodes associated with u and p respectively. This element
will be referred to as Q,,.,- Three such quadrilateral elements Q84, Q88 and Q94 are shown in
Fig. 2.

Substituting the trial displacement field, eqn (15), into egn (3) leads to

€(x)= gnu’(x)u'(z) (17)
AV() = 2. B,/ (U’ (1) (18)

where for plane strain problem € = (s € 2€5))", AV = uy;,

N, © 19)
Bu’z[ 0 NL,Z (
Ni:» N
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(a) ELEMENT Q84 (b) ELEMENT Q 88 {c) ELEMENT Q94
o BOTH DISPLACEMENT AND PRESSURE D.O.fF
¢ DISPLACEMENT D.0.F ONLY
Fig. 2. Three quadrilateral plane strain elements proposed for two-dimensional linear elastic porous media.
and

B, =[NL: Nuiil (20)

Similarly, the pore pressure gradient vector Ap = (P,, P,,)" can be obtained in terms of nodal
pore pressures from eqn (16) as

Ap=7_; B, )p'(1) @1
where
1 _ N’.l
B =[N @)

The effective stress vector o = (o, 0 02,)7 in view of eqn (2) can be expressed in terms of
nodal displacements as

¢r=’5__:‘l DB,!x)U'(1) + o, )

in which the elasticity matrix D is defined by o = De + o, where, @, is the corresponding initial
stress tensor.
Substituting eqns (15)~23) into eqn (14) yields

Ry "ul

n )= S HUOF <K@ F 0O b
Ry . T n, n
+3, WO ob' + 3 3 VO «cPP(1)

p "vl

—E‘ E 3 Pi(t)+m" « P’(t)—;jl g*Pi(t)+by!

- WO *r' 45 g Py r! @)
in which
u_ T J
k L' [B.']' DB, dv 25

mV = .Lz (B,']"HB,’ dv 26)
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= j BN do Q7
Rt

b/ = L‘ pN.'F dv (28)

by = j B/ o do 29)
R(

by = fR(p,[B,,'FnF do (30)

r' =f N/ Tds (31
S51°

r = j NQ ds. 32)
So°

Substituting eqn (24) into eqn (13) and equating the first variation of 7 to zero lead to a
discretized governing system in the form:

K C Ui)l _f Bi—B;+R,
[CT -g* M]{P(t)] h {g *B;—g* Rz} 33
in which
U=sU?............ U7 (34)
P=(P'P%............ Pme)T 39

where m, and m, are respectively total numbers of non-prescribed displacement nodes and
pore pressure nodes. The notations K, C, M, B, B,, B;, R; and R, indicate the matrices resulted
from assembling individual element contributions of k, ¢, m, b, b,, by, r; and r, respectively.

The first of eqn (33) is the discretized equilibrium equation in which K is the usual elastic
stiffness of the medium; C denotes the coupling effect of a unit nodal pore pressure; B, is the
load vector due to the body forces; B; is the load vector due to initial stresses existing in the
medium before the application of external load and R, is the load vector due to boundary
tractions. The second equation represents the discretized flow equation which relates volu-
metric strain to the inflow due to the nodal pore pressures, the fluid gravitational force B, and
the specified boundary flow R,.

Laplace transformation of temporal variables
Laplace transform is used to remove the time dependence and replace it by an algebraic
dependence on the transform parameter. The Laplace transform of eqn (33) is given by

K 1C { }= B]I:'BZ;’F] (36)
cT -M

in which s is the Laplace transform parameter and a bar denotes the Laplace transform, e.g.

T

x= J; . x(t)e s dt. 37

Equation (36) can be rearranged as

A R e [ B g 08
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which is then condensed by eliminating U, to have

(M+sL)P=sF (39

where
L=C"K'C (40)
F={-15+1 R KB, - B4 R “

Equation (39) constitutes a classical eigenvalue problem for which the solution is given in
the form[12]

Al

=S 2 ;0
P-M. 5=, a,Q, 42)
inwhich s, i=1,......... m, are the eigenvalues of eqn (39), Q; is the eigenvector associated
with s; and,
d=QFIQ"LQ). (43)

The Laplace transform inversion[13] of eqn (42) leads to the solution of P(t) in the form
PO)=5 ofa@en+[ 44D euegr]. )
i=1 ol o 0 dr
For a case of step loading applied at time ¢ = 0, P(t) can be reduced to
P(t)=2 Qi{ai(0) e*}. (45)
=1

For simple load history cases, we still can evaluate P(t) directly from eqn (44). For more
complicated cases, however, the load history can be approximated by a series of step loads and
its solution can be obtained via superposition.

NUMERICAL RESULTS AND DISCUSSIONS

Several examples are used to illustrate the efficiency of the present scheme. The results are
compared with available solutions regarding accuracy and computational effort.

One dimensional consolidation problem Figure 3 shows two finite element models for a
linear elastic soil column. One dimensional consolidation of this soil column under a constant
surface loading is analysed. In this study three types of quadrilateral elements, namely, Q84,
Q88 and Q94 (Fig. 2) are tested for their performances. A 2x2G quadrature is employed
uniformly for all the three elements.

These three finite elements are used to medel a linear elastic soil column as shown in Fig.
3(a); results of the surface displacement are compared in Table 1. Analytical solution[14] based
on Terzaghi’s one dimensional theory of consolidation and the solution by Sandhu’s scheme[11]
are also tabulated. Both Q84 and Q94 elements employing the 2 X 2 quadrature yield practically
identical results, which are in good agreement with Sandhu’s and the analytical solutions. The
Q88 element with 2x2 quadrature gives very poor results; better performance however is
obtained by increasing the order of quadrature in this case to a 3 X 3. Similar increase of the
quadrature order is found to give no improvement on the solutions obtained by Q84 and Q94
elements.

$S Vol. 18, No. 1—-D
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Table 1. One dimensional consolidation problem. Comparison of the surface settlements obtained by different

schemes
Element Sandhu's Temporal
Type Present Scheme Discretization Analytical
Time Scheme [11] Solution by
Factor Scott [l4]
T, =Ct/p? Q84 q88* Q94 QB4 Q88
0.0 0.008247 - 0.008237 - - 0.0
0.000021 0.009474 0.005170 ] 0.009462 [0.009173 | 0.004583 | 0.0051699
0.000042 0.010615 § 0.007310 |0.010604 |0.010335 | 0.006880 | 0.0073111
0.000105 0.013637 {0.011561 | 0.013626 |0.013403 {0.011281 0.0115600
0.000630 0.029096 { 0.028332 10.029078 {0.028995 { 0.028205 | 0.0283162
0.001154 0.038905 { 0.038336 | 0.038905 {0.038832 | 0.038274 0.0383404
0.022146 0.169270 {0.167200 | 0.169270 {0.167780 | 0.166276 0.1671920
0.043137 0.235856 ) 0,234386 | 0.235856 {0.235313 | 0.233820 0.2343582
0.064128 0.287472 10.285820 | 0.287472 | 0.287183 | 0.285541 0.2857453
0.106111 0.369581 | 0.367560 | 0.369581 | 0.369520 | 0.367538 0.3675682
0.316023 0.631705 1 0.628214 | 0.631705 | 0.632652 | 0.629232 0.6285880
0.525936 0.782513 1 0.778655 | 0.782329 | 0.783582 | 0.779762 | 0.7785834
1.155674 0.955180 | 0.953340 | 0.955180 | 0.955670 | 0.953776 0.9531839
5.353924 0.999918 | 0.999999 | 0.999918 | 0.999900 { 0.999896 0.9999984

* A 3 x3 Gaussion quadrature is employed for this case;
otherwise, 2 x2 Gaussion quadrature is used. Element
Q88 uging 2 x2 Gaussian quadrature gives very poor
solutions, which are not shown here.

/P(1)=P°(1110) /P(t)=P(tﬂo)
U Hasteditilies

—
H=7
IMPERMEABLE
a=2
{a) REGULAR MESH {b) IRREGULAR MESH

Fig. 3. Two finite element meshes for one dimensional consolidation of a soil column, of which Young's
modulus E = 6000, Poisson's ratio v = 0.4, k =4x 107 and c. = 0.05143.
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Fig. 4. Soil column consolidation problem; errors in pore pressure profile at time=0.0, using Q84, Q94 and
Q88 elements.

Error in the pore pressure distribution is plotted in Fig. 4. The result points to the
disadvantage of the Q88 element as it gives spurious solution for the initial pore pressure along
the depth of the soil column.

The computer times required to solve this problem are recorded. The IBM 370/145 at the
Asian Institute of Technology Regional Computer Center, was used and the CPU times of
31.60, 217.79 and 32.25 sec were reported for the models using Q84, Q88 and Q94 elements
respectively.

The main computational effort of the present scheme is due to the eigenvalue solution of
eqn (39). Thereafter, the pore pressure solution at any time can be obtained directly from the
closed form expression (eqn (44)) with relatively small effort. Since the size of the eigenvalue
system is controlled by the total number of pore pressure degrees of freedom, it is ad-
vantageous to keep these degrees of freedom at minimum. This also explains the considerable
amount of computer time spent for the Q88 solution. The case of Q88 element which employs 8
pressure nodes needs about 6-7 times as much computer time as required by the Q84 and Q94
elements, both employing 4 pressure nodes. For this reason coupled with its poor performance
in representing the pore pressure field, the Q88 element will not be considered any further in
this study.

To further investigate the performance of the Q84 and Q94 elements, an irregular mesh
shown in Fig. 3(b) is tested. The surface settlements at the mid point of the soil column
obtained with these two elements are shown in Table 2. No significant difference can be
concluded in comparing the two solutions. The Q84 element will be employed however in the
following examples simply because of its smaller computational effort.

The excess pore pressure history at depths Z/H =2{70 and Z{H = 4/70 are shown in Figs.
5(a) and 5(b) respectively. The solution by Sandhu’s scheme[11] and the analytical solution[14]
are also presented for comparison. The result shows that Sandhu’s scheme entails errors
whenever there is a change of time step size. This phenomenon is particularly evident at ¢ = 1.1
when the time step is increased from 0.1 to 10.

The solution for the excess pore pressure at Z/H = 2/70, obtained by both the present
scheme and Sandhu’s scheme deviate from the analytical solution greatly at the initial state up
to the time t = 0.2 sec. This initial discrepancy decreases at the depth Z/H = 4/70. The reason
can be explained as follows: At the time right after the load is applied, the pressure field at the
surface jumps to equilibriate the applied pressure and drops sharply away from it. Under this
situation, the linear interpolation function is inadequate to represent the pore pressure field at
the vicinity of the load. This effect will be studied in details by mesh refinement in the following
example.
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Table 2. One¢ dimensional consolidation problem. Comparison of the surface settiements in the irregular mesh
modelled by the Q84 and Q94 elements

Time ElTe:,h;:t Present Scheme Analytical
Factor N Solution
T, =C U/ Q84 Q94
0.0 0.0062%0 0.007157 0.0
0.000021 8.007816 0.008437 0.0051669
0.000042 E Q. 008109 0.009734 0.0073110
0.000105 0.012540 0.013018 0.0115600
0.000630 0.0288%0 0.028968 £.,0283310
0.001154 0.038890 .038868 0. 0383400
0.022146 0.169307 0.169306 0.1671920
0.043137 0.236040 0.236040 0.2345820
0.064128 0.287470 0.287472 0.2857450
0.106111 0.369770 0.369765 0.3675680
0.316023 f 0.632350 G.631888 0.6282590
0.525936 j 0.782700 0.782697 0.7785830
1.155674 ! 0.955180 0.955180 0.9531840
5.353924 f 0.999918 0.598918 0.9999380
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Fig. 5. Soil column consolidation problem; pore pressure history.
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Plane strain consolidation problem
A linear elastic half space is subjected to a uniform strip load P,. Three finite element

meshes of Q84 elements are used, as shown in Fig. 6. The load is applied at time t =0 and
remains constant.

The vertical profile along the center line of the excess pore pressure at time t = 0 is given in

Fig. 7(a). Errors are noticeable at the first element layer near the load in both the coarse and the
first refined meshes. Since the size of the element next to the loaded surface is too coarse in
both cases, the linear interpolation function adopted cannot adequately represent the large
variation in pore pressure at the vicinity of the load. In the third mesh (Fig. 6¢c), the refinement
is made so that a larger number of elements are concentrated at the load region. Almost the
same amount of error remains in the first layer of elements; however, its position is now shifted
upwards. Errors in pore pressure are also observed (Figs. 7a, b) at the half-space model
boundaries. This is anticipated because a finite region is used to model the semi-infinite half
space.
The excess pore pressure history at a point, x»/a = 0.5 and x,/a = 0.0, is presented in Fig. 8.
An excellent overall solution is obtained with fine mesh 2(Fig. Sc). Sandhu’s results and the
analytical results{2] are also plotted for comparison. Both the fine mesh 1 (Fig. 6b) and
Sandhu’s scheme are not capable of giving correct pore pressure solutions in the earlier time
stage due to the same reason mentioned.
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Fig. 6. Three finite element models for an elastic half space.
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Fig. 7. Distribution of initial pore pressure in the elastic half space due to uniform strip load.
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Fig. 8. Plane-strain consolidation problem; excess pore pressure history at x2fa = 0.5, xi/a = 0.0.
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Fig. 9. Surface settlement of the half space due to consolidation.

Solution of the settlement at the center of the loaded surface, are plotted in Fig. 9 together
with Sandhu’s solution. Good agreement is seen between the two solutions.

Regarding computational efficiency, the CPU times required to solve this problem by the
three meshes are compared in Table 3 with the time used by Sandhu’s scheme. The present
solutions are computed by the FEAP program{15] modified for this purpose. For relevant
comparison, the problem is solved on the IBM 370/145 at the Regional Computer Center of
Asian Institute of Technology, using the CONSOLD computer program developed by Sandhu,
with At =0.0001 over [0,0.0001], Ar=0.001 over [0.0001,0.0101], At=001 over
[0.0101,0.1101], At =0.1 over [0.1101,1.1101}, and At = 1.0 over [1.1101, 11.1101]. The com-
parison shows that for the same finite element mesh, Sandhu’s scheme needs about 8 times as
much computer time as required by the present scheme.

Semi-infinite layer subjected to a strip load

A semi-infinite layer on an impervious base is subjected to a strip load. This semi-infinite
layer is modelled by QB84 element mesh (Fig. 10) with the vertical boundary extended to a
distance of 4(a) from the centre. Figure 10 shows the settlement at the center of the loaded
surface. The exact solution by Gibson et al.{16] is also given for comparison; only small
discrepancies are observed.
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Table 3. Plane-strain consolidation problem. Computer time comparison between the present scheme and Sandhu's
scheme[11} in IBM 370/145 CPU sec

Present Scheme with Q84 Sandhu's Scheme
Course Mesh Fine Mesh 1 Fine Mesh 11 Fine Mesh I
(Fig. 6a) (Fig. 6b) (Fig. 6c¢) (Fig. 6b)

125.91 629.90 632.0 5136.25
ADJUSTED TIME FACTOR T = T t/d°
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Fig. 10. Consolidation of a semi-infinite soil layer; surface settlement at the center.

CONCLUSIONS

In this study, the Q84 element is shown to be a reliable basis for the analysis of 2D linear
elastic porous media. The combination of finite element idealization (in space) and the Laplace
transform (of time variables) proves to be effective.

The present scheme gives better overall performance than time integration schemes. More
notably, this superiority can be obtained with much less computational effort, since the solution
for a specified time can be computed directly without a step-by-step marching. Higher reliability
is anticipated because the present scheme is free of numerical instability.
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